logo
year 9, Issue 32 (8-2025)                   Parseh J Archaeol Stud 2025, 9(32): 37-64 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kamali A A, Azizi Kharanaghi M H, Beheshti S I, Aarab A. (2025). Exploration of Mining and Slag Sites of Ancient Metal Smelting in Khatam County, Yazd Province. Parseh J Archaeol Stud. 9(32), 37-64. doi:10.22034/PJAS.832
URL: http://journal.richt.ir/mbp/article-1-832-en.html
1- Assistant Professor, Department of Archaeometry and Natural Sciences, Research Center for Conservation of Culture Relics (RCCCR), Research institute of Cultural Heritage & Tourism (RICHT), Tehran, Iran (Corresponding Author). , a.kamali@richt.ir@gmail.com
2- Assistant Professor, Department of Prehistoric Archaeology, Iranian Center for Archaeology (ICAR), Research institute of Cultural Heritage & Tourism (RICHT), Tehran, Iran.
3- Research Expert, Department of Archaeometry and Natural Sciences, Research Center for Conservation of Culture Relics (RCCCR), Research institute of Cultural Heritage & Tourism (RICHT), Tehran, Iran.
4- Researcher, Institute of Archaeology, University of Tehran, Tehran, Iran.
Abstract:   (404 Views)
Abstract
The slag sites under study are located in Khatam County, Yazd Province. In the archaeological surveys of Khatam County in 1400 AH, twelve metal smelting sites were identified through abundant metallic slag, and each of these sites was sampled. Petrographic analysis revealed that the predominant slag is iron, with only one instance of copper slag. The sites where metal smelting occurred, attributed to historical and Islamic periods based on pottery, exhibited evidence of iron smelting and its compounds in eleven samples. These samples contain metallic minerals such as wustite, marcasite, hematite, and magnetite. Marcasite and wustite minerals are related to smelting furnace processes and are products of mineral substances. It appears that in some mines in the region, magnetite and hematite are the predominant minerals, while in others, hematite is the predominant mineral, with a smaller amount of magnetite, which is evident in these primary minerals within the slag. Another sample related to copper slag exhibited small vesicular structures and limited copper ore minerals (chalcopyrite, digenite, and metallic copper) within the slag matrix. Alongside these primary minerals, there is a flow-like green glassy component indicating high furnace heat. The analytical results show that the MgO content in the samples is less than the amount of lime. Therefore, the limestone in this area is mainly ordinary limestone and not dolomite. Chemical analysis revealed that metal workers in this area were more successful at producing sponge iron.
Keywords: Archaeological Survey, Slag, Iron, Ancient Mining, Khatam.

Introduction
Iran has long been recognized as a center for mining and metal smelting. Archaeological evidence indicates that northern and central Iran are among the oldest centers of metallurgy in the world. The presence of rich mineral reserves in Iran, among other factors, has influenced the growth of mining and metalworking in this region (Momenzadeh, 2005). Due to the existence of various metal ores and advanced cultures in Iran, this area can be identified as one of the main hubs of technological innovation in the field of ancient mining and metalworking. Khatam County, located in the southern part of Yazd Province, holds particular significance in the realm of iron slag. One of the earliest efforts to produce steel worldwide took place in this region (Alipour et al., 2021). Considering the evidence of steel production in this area, it is essential (Alipour, 2017) to understand the role Khatam played in iron production during the Islamic and Sassanian periods. To investigate this matter, 12 sites in Khatam County were selected for studying iron slag. The main objective of this research includes petrographic and geochemical analysis of the slag to identify the type of extracted metal(s) and the extraction process and production of metal(s) at these sites. Additionally, the provision of necessary minerals for mining in this area is also under scrutiny. Historical and field research methods were employed for this study, involving the collection of data and archaeological investigations; field studies, such as topographic mapping, photography, identification of sites and metal smelting furnaces; and examination of samples using polarizing microscopes and XRF devices. This research has addressed primary inquiries related to the type of metals in slag, the mining process, and metal production at Khatam’s iron slag sites. Overall, Khatam County held significant importance in the production of metals during ancient and Islamic times. This region is recognized as one of the ancient mining and metalworking centers, and further research into the history and mining processes in this area could provide additional insights into the history of metalworking in Iran.

Discussion
Based on XRF chemical analyses of the slag, the results indicate that the majority of the mineral content in these slags consists of iron ore, with only one case showing the presence of copper. The CaO concentrations in these slags range from 3.59 to 28.41%, and an increase in CaO leads to the production of calcium-rich olivine. The type of slag (flow, permeable, massive, or furnace bottom) significantly impacts the results of chemical analysis and the ratio of oxides of the main elements (metallic oxides and silica). Additionally, the high amount of CaO facilitates the formation of a calcium-rich silicate phase. Petrographic microscopy studies confirm these findings, revealing observable olivine phases and primary silicate phases with metallic iron minerals such as magnetite and hematite. Due to the silica content, the addition of limestone to the smelting process increases the amount of duplex iron (Fe3O4). Consequently, silica stabilizes triplex iron oxide (hematite), while limestone stabilizes spinel iron oxide (magnetite). Moreover, microscopic examinations primarily reveal metallic minerals such as magnetite and metallic iron. Furthermore, sponge iron, like many other ancient civilizations in the region under study, was produced. The production of this type of iron requires less technical knowledge than other types of iron (Abbasnejad, 2009).
Surveying the region revealed that plants such as pistachios and wild almond produce high-quality charcoal. Since blacksmiths have no idea about using additional limestone in the furnace, the smelted slags were highly adhesive, leading to significant iron loss. The use of limestone in iron removal creates slags with fine properties that are easily separated from the iron (Abbasnejad, 2009). A good slag resulting from smelting should contain 30 to 40% limestone. Tests conducted on iron ore in this region show limestone percentages ranging from 3.59 to 28.41%. The slag analysis results also indicate a small amount of limestone, averaging approximately 11.38%. The deficiency of these two elements in slag, as they play crucial roles in reducing smelting heat and separating iron from slag, can indicate high iron levels and the inadequacy of slag (adhesiveness, viscosity, high density), resulting in low-quality sponge iron. The percentage of Fe2O3 ranges from 23.20 to 74.25%, and the percentage of Al2O3 ranges from 0.003 to 0.94%. The percentage of MgO in the tested slags is less than 0.003%. According to the mineral analysis, the most important iron minerals in this region include hematite (Fe2O3) and magnetite (Fe3O4). Due to technical flaws in these furnaces, sponge iron contains impurities such as silica, phosphorus, aluminum oxide, manganese oxide, and other metallic oxides, as confirmed by various tests conducted on ore and slag.

Conclusion
Eleven samples from the metal smelting site showed evidence of iron smelting and its compounds. In these samples, metallic ores such as wustite, marcasite, hematite, and magnetite are observed. Marcasite and wustite ores are related to smelting furnace processes and are mineral byproducts. It seems that in some mines in the region, magnetite and hematite are predominant, while in others, hematite is less prevalent, and magnetite dominates. Additionally, in the sample related to copper smelting slag, small and limited vesicles of copper ores (covellite, digenite, and metallic copper) are observed alongside a part of the green glassy matrix, indicating high furnace heat. This primary mineral evidence is observed in the slags. Considering the changes in the calcium oxide (CaO) concentration, it can be inferred that this substance was added during smelting operations to aid in smelting and reduce the temperature of the furnace materials. The microscopic results of some slags reveal primary minerals, mostly hematite and magnetite metallic ores, indicating a magmatic origin for the utilized minerals. The percentages of silica (SiO2), magnesium, and aluminum in these slags are relatively low. Analyses of these slags and iron stones from this region show that a deficiency of CaO and SiO2 leads to iron loss in the slag while increasing the iron content within it.
Based on this research, it is likely that iron ore was extracted from mines near the site and was subsequently transported to this location. Given the presence of iron mines at distances of 8, 10, and 15 kilometers from these sites, these mines are likely the source of these slags. Regarding the archaeology of the region, historical references indicate that the area held significance and prominence in various historical periods, particularly during historical and Islamic eras. However, due to insufficient information about the archaeology of the region and the lack of precise dating of these sites, accurate dating of these sites is unfeasible.
Full-Text [PDF 2831 kb]   (78 Downloads)    
Type of Study: Research | Subject: Interdisciplinary
Received: 2023/03/1 | Accepted: 2023/05/7 | Published: 2025/08/23

References
1. - اسلامی‌کردی، سید نجمه، (1391). «فلزکاری کهن در شمال فلات مرکزی ایران: مطالعات موردی تپه سیلک، تپه حصار، تپه چشمه علی و محوطه باستانی اریسمان». پایانامۀ کارشناسی‌ارشد، اصفهان: دانشگاه آزاد اسلامی واحد تهران مرکزی (منتشر نشده).
2. - امامی، سید محمدامین، (1383). «مطالعات مینرالوژیک بر روی سرباره‌های ذوب مس در معدن چاه موسی در طرود، شاهرود». کنفرانس مهندسی معدن ایران، دانشگاه تربیت مدرس.
3. - امیری‌باغبادرانی، علیرضا، (1395). «تحلیل منشأ فلزکاری در عصر مفرغ قدیم در شمال‌غرب ایران؛ بر مبنای داده‌های فلزگری کول‌تپه هادیشهر». پایانامۀ کارشناسی‌ارشد، تبریز: دانشگاه هنر اسلامی تبریز (منتشر نشده).
4. - الیکایی دهنو، ثریا، (1396). «بررسی سیستماتیک محوطه‌های دارای شواهد فلزکاری کهن در دهستان شمالی کوهدشت». لرستان: پژوهشگاه میراث فرهنگی و گردشگری (منتشر نشده).
5. - الیکایی دهنو، ثریا، (1398). «بررسی سیستماتیک محوطه‌های دارای شواهد فلزکاری کهن در دهستان گل‌گل کوهدشت». لرستان: پژوهشگاه میراث فرهنگی و گردشگری (منتشر نشده).
6. - الیکایی دهنو، ثریا، (1399). «بررسی سیستماتیک محوطه‌های دارای شواهد فلزکاری کهن در شهداد کرمان». کرمان: پژوهشگاه میراث فرهنگی و گردشگری (منتشر نشده).
7. - باقریان، سیامک، (1394). «سیر تاریخی معدنکاری در فلات ایران در دوره باستان (از آغاز تا تشکیل دولت ماد)». تاریخ، 10(37): 133-143. https://journals.iau.ir/article_540093.html
8. - بهشتی، سید ایرج، (1393). «شواهد میراث معدنکاری کهن در ایران: مرحلۀ اول، ناحیۀ انارک در شرق استان اصفهان». انارک: پژوهشگاه میراث فرهنگی و گردشگری (منتشر نشده).
9. - بهشتی، سید ایرج، (1400). بانک اطلاعاتی معادن باستانی فلزی حوزه راه ابریشم در شمال ایران مرکزی (فاز اول: مطالعات کتابخانه‌ای)». تهران: پژوهشگاه میراث فرهنگی و گردشگری. (منتشر نشده).
10. - رحیمی، فرشته، (1385). «شناسایی و بررسی معادن کهن نقره در حوزۀ زاگرس». تهران: پژوهشگاه میراث فرهنگی و گردشگری (منتشر نشده).
11. - رحیمی، فرشته، (1400). «بانک اطلاعاتی محوطه‌های فلزکاری کهن در شمال فلات مرکزی (فاز اول: استان‌های تهران و قزوین)». تهران: پژوهشگاه میراث فرهنگی و گردشگری (منتشر نشده).
12. - رحیمی، فرشته، (1402). «بانک اطلاعاتی محوطه‌های فلزکاری کهن در فلات مرکزی (فاز سوم: استان‌های کاشان، قم و اصفهان)». تهران: پژوهشگاه میراث فرهنگی و گردشگری (منتشر نشده).
13. - روشن‌روان، حسین؛ و اشراقی، علی، (1402). گزارش نقشۀ زمین‌شناسی برگه 1:100000 چاهک. تهران: سازمان زمین‌شناسی و اکتشاف معدنی کشور.
14. - زواش، محمد، (1376). کانی‌شناسی در ایران قدیم. تهران: انتشارات پژوهشگاه علوم انسانی و مطالعات فرهنگی، چاپ دوم.
15. - سیدین، ساسان، (1394). «فرآیندهای ذوب و استحصال فلزات در دوره ساسانی بر اساس مطالعات باستان‌فلزشناسی: نمونه موردی دارابگرد، گور (اردشیرخوره) و بیشاپور». رسالۀ دکتری، تهران: دانشگاه تربیت مدرس (منتشر نشده).
16. - عباس‌نژاد سرشتی، رحمت؛ و فاضلی‌نشلی، حسن، (1385). «فرآیند فلزکاری در جنوب شرقی ایران در هزاره‌های چهارم و سوم ق.م.: سازوکارهای اقتصادی، اجتماعی و سیاسی». پژوهش‌های تاریخی ایران و اسلام، 2(2): 81-98. http://noo.rs/ogEsi
17. - عباس‌نژاد، رحمت، (1387). «فرآیند تحولات اقتصادی-اجتماعی و برهم‌کنش‌های فرهنگی در هزاره‌های پنجم و چهارم ق.م در دشت قزوین: با تکیه بر فلزکاری». رسالۀ دکتری، تهران: دانشگاه تهران (منتشر نشده).
18. - عسگری، رحمان، (1396). «مطالعات فلزکاری کهن بر روی محوطه باستانی اریسمان (دوره I) بر اساس یافته‌های جدید». پایانامۀ کارشناسی‌ارشد، اصفهان: دانشگاه هنر اصفهان (منتشر نشده).
19. - غلامی، محسن، (1397). «بررسی شیوه‌های معدنکاری در گذشته و معدنکاری کهن در منطقه کاشان». پایانامۀ کارشناسی‌ارشد، کاشان: دانشگاه کاشان.
20. - قاسم‌نژاد، مریم، (1396). «بررسی باستان‌شناسی محوطه‌های فلزگری کهن در شمال شرقی خراسان جنوبی: مطالعه موردی منطقه زیرکوه». پایانامۀ کارشناسی‌ارشد، بیرجند: دانشگاه بیرجند (منتشر نشده).
21. - قاسمی، محمد، (1393). «بررسی و مطالعه فلزکاری مس و آلیاژهای مسی در محوطه‌های فرهنگی در محدوده زمانی هزاره سوم بر اساس مطالعات متالوگرافی (فاز ۱)». تهران: پژوهشگاه میراث فرهنگی و گردشگری (منتشر نشده).
22. - کمالی، امین‌اله؛ بهشتی، سید ایرج؛ عزیزی خرانقی، محمدحسین؛ و دارخال، نازلی، (1401). «بررسی فیزیکوشیمیایی سرباره‌های استان یزد به‌منظور رهیافتی به کانه‌های استحصالی (شهرستان خاتم)». تهران: پژوهشگاه میراث فرهنگی و گردشگری (منتشر نشده).
23. - مؤمن‌زاده، مرتضی، (1384). «مروری بر معادن و معدن‌کاری باستانی ایران». مجلۀ مفرغ، 5: 7-12.
24. - میرشکرایی، محسن، (1395). «معادن کهن، تلاقی فرهنگ و طبیعت: پژوهشی در میراث معدنی ایران - مطالعه موردی دو معدن باقرق و نخلک». تهران: پژوهشگاه میراث فرهنگی و گردشگری (منتشر نشده).
25. - نظافتی، نیما؛ مومن‌زاده، مرتضی؛ و احمدی، کامران، (1384). «نقشه راه مطالعات معدنکاری و فلزکاری کهن در ایران». پژوهۀ باستان‌سنجی، 3(1): 77-98. https://doi.org/10.29252/jra.3.1.77
26. - وولف، هانس، (1388). صنایع‌دستی کهن ایران. ترجمۀ سیروس ابراهیم‌زاده، تهران: انتشارات علمی و فرهنگی، چاپ سوم.
28. - Abbāsnejād, R., (2008). “The Process of Socioeconomic Transformations and Cultural Interactions in the Fifth and Fourth Millennia BC in the Qazvin Plain: With an Emphasis on Metallurgy”. PhD Dissertation, Tehran: University of Tehran. (In Persian).
29. - Abbāsnejād-Sarashti, R. & Fāzeli-Nashli, H., (2006). “The Process of Metallurgy in Southeastern Iran During the Fourth and Third Millennia BC: Economic, Social, and Political Mechanisms”. Iranian and Islamic Historical Studies, 2(2): 81–98. (In Persian). http://noo.rs/ogEsi
30. - Abbasnejad Seresty, R., (2009). “Iron archaeometallurgy in the triangle of the Sirdjān, Neiriz and Shahr-e-Bābak”. The International Journal of Humanities, 16(1): 1–14. https://dor.isc.ac/dor/20.1001.1.25382640.2009.16.1.7.6
31. - Alipour, R., (2017). “Persian crucible steel production: Chāhak tradition”. Doctoral dissertation, University College London.
32. - Alipour, R., Rehren, T. & Martinón-Torres, M., (2021). “Chromium crucible steel was first made in Persia”. Journal of Archaeological Science, 127: 105224. https://doi.org/10.1016/j.jas.2020.105224
33. - Amiri Bāghbāderāni, A., (2016). “An Analysis of the Origins of Metallurgy in the Early Bronze Age in Northwestern Iran: Based on the Metallurgical Data from Kul Tepe Hadishahr”. Master’s Thesis, Tabriz: Tabriz Islamic Art University. (In Persian).
34. - Bagheryan, S., (2015). “Historical course of mining in the Iranian Plateau during antiquity (from the beginning to the formation of the Median state)”. Journal of History, 10(37): 133-143. (In Persian). https://journals.iau.ir/article_540093.html
35. - Bahshti, S. I., (2014). “Evidence of Ancient Mining Heritage in Iran: Phase I, Anarak Region, Eastern Isfahan Province”. Anarak: Research Institute of Cultural Heritage and Tourism. (In Persian).
36. - Bahshti, S. I., (2021). “Database of Ancient Metal Mines Along the Silk Road Corridor in Northern Central Iran (Phase I: Library Studies)”. Tehran: Research Institute of Cultural Heritage and Tourism. (In Persian).
37. - Bagherian, S., (2015). “A Historical Overview of Mining in the Iranian Plateau in Antiquity (From the Beginning to the Formation of the Median State)”. Journal of History, 10(37). (In Persian). https://journals.iau.ir/article_540093.html
38. - Blakelock, E., Martinón-Torres, M., Veldhuijzen, H. A. & Young, T., (2009). “Slag inclusions in iron objects and the quest for provenance: An experiment and a case study”. Journal of Archaeological Science, 36(8): 1745–1757. https://doi.org/10.1016/j.jas.2009.03.032
39. - Büchner, W., Schliebs, R., Winter, G. & Büchel, K. H., (1989). Industrial inorganic chemistry (D. R. Terrell, Trans.). New York: VCH.
40. - Chegini, N. N., Helwing, B., Parzinger, H. & Vatandoust, A., (2004). “A prehistoric industrial settlement on the Iranian Plateau – Research at Arisman”. In: Persia’s Ancient Splendour: Mining, Handicraft and Archaeology: 210–217.
41. - Concidine, D. M. & Concidine, G. D., (1984). Encyclopedia of Chemistry. Van Nostrand Reinhold.
42. - Elikaei Dehno, S., (2017). “Systematic Survey of Sites with Evidence of Ancient Metallurgy in the Northern District of Kuhdasht”. Lorestan: Research Institute of Cultural Heritage and Tourism. (In Persian).
43. - Elikaei Dehno, S., (2019). “Systematic Survey of Sites with Evidence of Ancient Metallurgy in the Gol-Gol District of Kuhdasht”. Lorestan: Research Institute of Cultural Heritage and Tourism. (In Persian).
44. - Elikaei Dehno, S., (2020). “Systematic Survey of Sites with Evidence of Ancient Metallurgy in Shahdad, Kerman Province”. Kerman: Research Institute of Cultural Heritage and Tourism. (In Persian).
45. - Elykaei, S., (2020). “Systematic study of sites with ancient metallurgy evidence in Shahdad”. Kerman.(In Persian).
46. - Emāmi, S. M.-A., (2004). “Mineralogical Studies on Copper Smelting Slags from Chah-Mousa Mine in Taroud, Shahroud”. Iranian Mining Engineering Conference, Tarbiat Modares University. (In Persian).
47. - Eslāmi Kordi, S. N., (2012). “Ancient Metallurgy in Northern Central Iran: Case Studies of Tepe Sialk, Tepe Hissar, Tepe Cheshmeh Ali, and the Ancient Site of Arisman”. Master’s Thesis, Tehran: Islamic Azad University, Central Tehran Branch. (In Persian).
48. - Ghasemi, A. & Talbot, C. J., (2006). “A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran)”. Journal of Asian Earth Sciences, 26(6): 683–693. https://doi.org/10.1016/j.jseaes.2005.01.003
49. - Gholāmi, M., (2018). “Study of Ancient and Historical Mining Methods in the Kashan Region”. Master’s Thesis, Kashan: University of Kashan. (In Persian).
50. - Ghorbani, M. (2013). The Economic Geology of Iran: Mineral Deposits and Natural Resources. Springer. https://doi.org/10.1007/978-94-007-5625-0
51. - Horne, L., (1982). “Fuel for the Metal Worker”. Expedition, 25(1): 6.
52. - Kamāli, A., Bahshti, S. I., Azizi Kharanaghi, M. H. & Darkhāl, N., (2022). “Physicochemical Study of Slags in Yazd Province for Insights into Extracted Ores (Khatam County)”. Tehran: Research Institute of Cultural Heritage and Tourism. (In Persian).
53. - Mirmashkarei, M., (2016). “Ancient Mines: The Intersection of Culture and Nature – A Study of Iran’s Mining Heritage (Case Studies of Baqerq and Nakhlak Mines)”. Tehran: Research Institute of Cultural Heritage and Tourism. (In Persian).
54. - Momenzādeh, M., (2005). “A Review of Ancient Mines and Mining in Iran”. Mehregan (Bronze) Journal, 5: 7–12. (In Persian).
55. - Nazāfati, N., Momenzādeh, M. & Ahmadi, K., (2005). “A Roadmap for the Study of Ancient Mining and Metallurgy in Iran”. Archaeometry Research Journal, 3(1): 77–98. (In Persian). https://doi.org/10.29252/jra.3.1.77
56. - Nezafati, N. & Pernicka, E., (2012). “Early Silver Production in Iran”. Archaeology, 3(2): 37–45.
57. - Ovissi, M., Yazdi, M. & Ghorbani, M., (2017). The Persian Turquoise Mining at Neyshabur Mine in Historical Times.
58. - Pezeshkan, A. J. & Damghani, B., (2005). Mines and Mining in Iran. Iranian Mines and Mining Industries Development and Renovation Organization.
59. - Qāsemi, M., (2014). “Study of Copper and Copper Alloy Metallurgy in Cultural Sites of the Third Millennium BC Based on Metallographic Studies (Phase I)”. Tehran: Research Institute of Cultural Heritage and Tourism. (In Persian).
60. - Qāsemnejād, M., (2017). “Archaeological Study of Ancient Metallurgical Sites in Northeastern South Khorasan: A Case Study of Zirkuh Region”. Master’s Thesis, Birjand: University of Birjand. (In Persian).
61. - Rahimi, F., (2006). “Identification and Survey of Ancient Silver Mines in the Zagros Region”. Tehran: Research Institute of Cultural Heritage and Tourism. (In Persian).
62. - Rahimi, F., (2021). “Database of Ancient Metallurgical Sites in Northern Central Plateau (Phase I: Tehran and Qazvin Provinces)”. Tehran: Research Institute of Cultural Heritage and Tourism. (In Persian).
63. - Rahimi, F., (2023). “Database of Ancient Metallurgical Sites in the Central Plateau (Phase III: Kashan, Qom, and Isfahan Provinces)”. Tehran: Research Institute of Cultural Heritage and Tourism. (In Persian).
64. - Ramtin, I., (2008). Summary of 10,000 Years of Iran’s History (Pre-Islamic).
65. - Rashidinejad, F., (2015). “Iran Mining Industry Based on the 20-Year Perspective 2025”. In: Proceedings of the 2nd International Future Mining Conference, 235–244, Sydney, NSW.
66. - Rehder, E., (1991). “The Decorated Iron Swords from Luristan: Their Material and Manufacture”. Iran, 29(1): 13–19. https://doi.org/10.2307/4299845
67. - Rehren, T., Charlton, M., Chirikure, S., Humphris, J., Ige, A. & Veldhuijzen, H. A. (2007). “Decisions Set in Slag: The Human Factor in African Iron Smelting”. In: Metals and Mines: Studies in Archaeometallurgy: 211–218.
68. - Roshān-Ravān, Hossein & Eshrāqi, Ali., (2023). Geological Map Report of the 1:100,000 Chahak Sheet. Tehran: Geological Survey and Mineral Exploration of Iran. (In Persian).
69. - Seyedin, S., (2015). “Processes of Smelting and Metal Extraction in the Sasanian Period Based on Archaeometallurgical Studies: A Case Study of Darabgerd, Gor (Ardashir Khurreh), and Bishapur”. PhD Dissertation, Tehran: Tarbiat Modares University. (In Persian).
70. - Stocklin, J., (1968). “Structural History and Tectonics of Iran”. AAPG Bulletin, 52(7): 1229–1258. https://doi.org/10.1306/5D25C4A5-16C1-11D7-8645000102C1865D
71. - Stocchi, E., (1990). Industrial Chemistry. Ellis Horwood.
72. - Stöllner, T., (2004). “Prehistoric and Ancient Ore-Mining in Iran”. In: Persia’s Ancient Splendour: Mining, Handicraft and Archaeology: 44–63).
73. - Vatandoust, A., (2004). “Old Mining and Metallurgy in Iran: Past and Future of a Research Perspective”. In: Persia’s Ancient Splendour: Mining, Handicraft and Archaeology: 2–7.
74. - Volf, H., (2009). Ancient Iranian Handicrafts. Translated by Siros Ebrahimzadeh. Tehran: Elm va Farhang Publications, 3rd Edition. (In Persian).
75. - Zāvash, M., (1997). Mineralogy in Ancient Iran. Tehran: Institute for Humanities and Cultural Studies, 2nd Edition. (In Persian).

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.