logo
Volume 107, Issue 45 (2-2025)                   Athar 2025, 107(45): 161-192 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Samandi A, Zamanifard A. (2025). Study of Seismic Protection Technologies in Historical Wooden Structures. Athar. 107(45), 161-192. doi:10.22034/45.107.6
URL: http://athar.richt.ir/article-2-1681-en.html
1- Ph.D Student in Restoration and Conservation of Historical Buildings and Urban Fabrics, Faculty of Conservation and Restoration, Iran University of Art, Tehran, Iran.
2- & Associate Professor, Department of Restoration and Conservation of Historical Buildings and Urban Fabrics, Faculty of Conservation and Restoration, Iran University of Art, Tehran, Iran. , zamanifard@art.ac.ir
Abstract:   (851 Views)
Abstract
This research, by reviewing historical buildings that use wood elements in their masonry structure with the aim of earthquake resistance, tries to find answers to the following questions:1-What kind of protection technology do the studied historical buildings use and what are their solutions against earthquakes?2-What are the systems of this technology, what are their characteristics and have they been used only for seismic retrofitting?3-What kind of technology are the examples of Iran and To what extent have they been successful in reducing earthquake damage and Are these systems still used in local architecture today? In this way, in the future research, focusing on the maintenance and development of these systems, it will help to protect the buildings in the future. The research identified and analyzed these systems with a library study, and the statistical population of this research focuses on the world-known systems and especially the local architecture of Iran, and the type of research is descriptive. Four identified earthquake-resistant technologies include foundation isolation, tie beam and timber bracing, and wooden framing. In these systems, wood is not exclusively used for seismic strengthening, and other factors have been effective in its selection.In Iran, there are also unique systems of the mentioned technologies that are considered successful examples against earthquakes, but today they forgotten. This study can be effective in creating the sensitivity of communities towards the protection of these systems by collecting local knowledge and creating a database of known historical systems of Iran and provide valuable insights about these local innovations in future research. Identifying and classifying these examples helps to understand traditional wooden construction systems and their potential for modern applications and it emphasizes the importance of integrating historical knowledge with modern architectural methods and their stability against earthquakes.
Keywords: Seismic Protection Technologie, Foundation Isolation, Timber Bracing, Wooden Framing, Tie Beam, Historical Building.

Introduction
This research explores the use of wood in historical masonry buildings for seismic resistance. The objectives of this study are to identify various protection technologies used in historical wooden structures and assess their effectiveness in mitigating earthquake damage. The necessity of this research arises from the increasing frequency of seismic events and the potential loss of cultural heritage associated with the destruction of these structures.By examining unique systems developed, this study seeks to uncover forgotten technologies that have proven successful in the past.   The study aims to create a comprehensive database of historical systems, fostering greater awareness and appreciation for the role of historical wooden structures in contemporary architecture.This research is not only significant for preserving cultural heritage but also for informing modern architectural practices that prioritize sustainability and resilience.
Materials and Methods: The research employs a descriptive methodology, utilizing a library study reviews literature from the past 25 years on traditional, earthquake-resistant buildings using wood. The statistical population includes historical buildings that incorporate wooden elements in their foundations, walls, and roofs, which are essential for earthquake resistance. This studyIt focuses on analyzing 42 case studies of wooden systems with seismic protection technology in earthquake-prone areas worldwide and ,particularly those found in Iran.
Data: Wood has been one of the earliest and most abundant natural materials used in construction worldwide.Archaeological evidence shows wooden houses dating back to 4200BCE in Iran(zomorshidi,1381) and ancient wooden structural elements in places like Knossos and Herculaneum, including rare multi-story wooden frame buildings(Dutu et.al.,2012).Medieval wooden structures discovered in Pertikara reveal sophisticated geometric designs and represent an important stage in the evolution of timber construction knowledge(Ruggieri et.al.,2013).Timber framing with brick infill first appeared in 8th-century Turkey and remains common in earthquake-prone and culturally significant regions, including parts of Europe(Dutu et.al.,2012).
    During earthquakes, buildings experience vertical, horizontal, and torsional forces.Horizontal forces mainly cause shaking and damage, while vertical forces affect heavy structural parts(Carazas,Rivero,2010). Key qualities for earthquake resistance include flexibility, deformability, and strength-allowing buildings to withstand large deformations without collapse(Szakats,2007).
Building geometry is critical for seismic stability; simple, symmetrical plans with minimal projections perform better. Structural elements must be well-connected to act integrally during shaking. Quality construction and the use of lightweight materials like wood and bamboo significantly enhance resilience.
Wood’s high tensile strength along fibers and light weight make it valuable for seismic resistance, especially in elevated parts, connections, and roofs. However, wood alone is vulnerable to seismic loads and is often combined with masonry and used in framed connections and wooden ties, which remain key in strengthening historic buildings against earthquakes(tabeshpor,farhangfar,2005).
Wooden structures are effective in earthquake resistance due to their high tensile strength, light weight, and flexibility. However, wood alone is vulnerable to seismic loads(Olivier Moles,2006). Common seismic solutions include wooden base isolation (which reduces seismic demand by decoupling the structure from ground motion, lowering energy transfer and keeping buildings mostly elastic during quakes), vertical and horizontal wooden ties, and light wooden frames, which improve structural integrity and distribute seismic forces, enhancing the resilience of masonry buildings.

Discussion
The seismic protection technologies can be categorized into four main types:1)foundation isolation,2) wooden framing,3) Tie beam, and 4Timber bracing. wooden frames, both regular and irregular, use various bracing shapes and are constructed with different infill materials such as stone, brick, adobe, plaster, wood, or bamboo, sometimes as single or double layers. Some frames are even without infill(open porches)or feature intricate decorations like stained glass and latticework(Figure11,12)
    These systems are found in different structural locations:throughout the entire building(e.g., Quchan shelters,Darvarchin system),foundations(e.g.,Eskati,Shikili),exterior walls(most examples),sometimes interior walls(Pombalinos),around openings(Tak system),and roofs (Romanian,TaleBast).The critical factor is the system’s integration from foundation to roof, ensuring structural unity(Figure13).  
Wood connections are mainly done by palate and tongue joints, natural fibers and ropes, or nailing. These systems were not developed solely for seismic resistance but also due to material availability, functional needs, aesthetics, construction speed, lateral force control during construction, compression force management, ventilation, and comfort. Overall, their effectiveness can be grouped into structural, decorative, functional, and other categories) Table 5(.
     In Iran, all four historical seismic protection technologies have been used. For example, wooden base isolation in Shikili foundations is a notable historic example recognized globally. Except for pigeon towers and lattice windows(orosi or sash),these systems were directly aimed at earthquake resistance and were primarily built in highly seismic cities like Rudbar,Quchan, and Tabriz.They showed minimal damage compared to adjacent buildings without such technologies.
Today, except for some tie beam and occasionally wooden foundations,other seismic protection technologies like wooden frames and Darvarchin walls are fading in Iranian vernacular architecture(Figure14,15).
 
Conclusion
Masonry buildings have low earthquake resistance due to their poor tensile strength, limited ductility, weak connections between components, and heavy mass. Earthquake damage to these structures can manifest as bending, twisting, cracking, sagging, and in the worst cases, collapse and destruction. The mentioned structural systems, when incorporating wood within their framework, demonstrate adaptability and flexibility. This integration of wood not only reduces the building’s weight but also enhances its strength, depending on the type of wood used and the connection details.
Historical examples show that these systems have effectively provided seismic resistance over long periods. Key factors influencing the earthquake resilience of wooden systems include the choice of wood species, its age and condition (avoiding decay), the quality of wood connections and integration with infill materials, climate and environmental conditions (such as moisture protection), proper construction methods, and structural dimensions like height and cross-sectional area.
The four technologies discussed have been implemented worldwide in different regions using varied methods but share common fundamental principles. Iran, being an earthquake-prone country, has historically utilized these technologies in its traditional and vernacular architecture, with successful seismic performance. Studying these systems offers valuable insights into local innovations and their potential application in contemporary society.
This is especially important since global studies aimed at reviving these systems for modern architecture have produced positive seismic results. However, in Iran, these wooden technologies remain largely unknown or have not been modernized for current use. Future research could focus on testing these wooden systems in Iran, providing quantitative data to validate their effectiveness. Additionally, it could promote designs based on indigenous wooden systems while adhering to conservation principles and regulations.
Full-Text [PDF 1455 kb]   (223 Downloads)    
Type of Study: Review Article | Subject: History of Architecture
Received: 2024/05/7 | Accepted: 2024/08/26 | Published: 2025/02/28

References
1. - اسماعیل‌زاده، پریسا؛ مختاری، طالقانی‌اسکندر؛ اصغرزاده، علی، (1401)، «تحلیلی بر سازه‌های چوبی شیبدار در ساختمان‌های صنعتی شمال ایران مربوط به دوران پهلوی». نقش جهان - مطالعات نظری و فناوری های نوین معماری و شهرسازی، ۱۲ (۱): ۱۲۸-۱۴۵. https://dorl.net/dor/20.1001.1.23224 991.1401.12.1.6.6
2. - اشتری‌ماجلان، سارا، (1400). «درآمدی بر معماری بومی روستایی گیلان(بخش دوم)». گاهنامه کمیته علمی معماری بومی ایکوموس ایران(گزارش داخلی)، 8: 14-29. https://openarchive.icomos.org/id/eprint/2829/1/
3. - برگی، خسرو، (1388). اصول مهندسی زلزله، تهران: دانشگاه تهران.
4. - تابش‌پور، محمدرضا؛ و فرهنگ فر، حسن، (1384). «مقاوم سازه‌ای لرزه‌ای سازه‌های بنایی خشتی». نشریه راه و ساختمان، 28. https://www.magiran.com/p308034
5. - جبل‌عاملی، عبدالله، (1382). طرح استحکام‌بخشی ایوان ستوندار عالی قاپو. سازمان میراث فرهنگی، صنایع دستی و گردشگری.
6. - چرختاب‌مقدم، شاهین‌؛ حسینی، سیدباقر، (1395). «بررسی تاثیر هماهنگی شکلی سازه و معماری خانه‌های امامزاده ابراهیم بر مقاومت لرزه‌ای آن‌ها». مسکن و محیط روستا. 35 (153): 23-34. http://jhre.ir/article-1-763-fa.html
7. - خاکپور، مژگان، (1390). معماری خانه‌های گیلان. رشت: فرهنگ ایلیا.
8. - رضازاده‌اردبیلی، مجتبی، (1396). مرمت آثار تاریخی(شناخت، آسیب شناسی و فن شناسی). تهران: دانشگاه تهران.
9. - زریبافیان، امید، (1385). «راهکارهای حفاظت از بناهای تاریخی در برابر زمین لرزه». همایش علمی منطقه‌ای معماری کویر. دانشگاه آزاد اسلامی واحد اردستان. paper/811793/1385
10. - زمرشیدی، حسین، (1390). معماری ایران، مصالح شناسی سنتی. تهران: زمرد.
11. - زهرائی، سید مهدی؛ صادق‌آذر، مجید؛ و زینالی، رضا، (1390). «ﺑﺮرﺳﻲعملکرد سه روش ﺳﻪ کنترل ﻏﻴﺮﻓﻌﺎل در بهبود پاسخ ﻟﺮزه‌ای قاب های خمشی فولادی(یادداشت فنی)». نشریه مهندسی عمران و نقشه برداری، 45 (4): 436 – 429. https://jcse.ut.ac.ir/article_23742.html
12. - ستارشیخی، غلامرضا؛ بخشی، حشمت‌اله؛ و یزدی‌نژاد، محمد مهدی، (1387). «روشی برای بهسازی لرزه‌ای ساختمان‌های مصالح بنایی»، همایش ملی مقاوم سازی ایران، دانشگاه یزد.
13. - ﻓﺎﺗﺢ، ﻣﺤﻤﺪ؛ و داریﻮش، ﺑﺎبک، (1389). ﻣﻌﻤﺎری روﺳﺘﺎیی (2). تهران: ﻋﻠﻢ و داﻧﺶ.
14. - فخارتهرانی، فرهاد، (1385). «مقابله پدرانمان با زمین‌لرزه در تبریزشیوه‌های تامین ایمنی ابنیه در برابر زلزله در معماری سنتی شهر تبریز». دومین کنفرانس بین المللی مدیریت جامع بحران در حوادث غیرمترقبه طبیعی، تهران.
15. - کامران‌کسمایی، حدیثه؛ دانشجو، خسرو؛ و مفیدی‌شمیرانی، سید مجید، (1396). «ارزیابی سکونتگاه‌های بومی گیلان بر محوریت زیست پایداری». نقش جهان. مطالعات نظری و فناوری های نوین معماری و شهرسازی، 2-7: 58-69. 20.1001.1.23224991.1396.7.2.3.0
16. - کبیرصابر، محمدباقر، (1392). «رهیافت‌های معماری سنتی تبریز برای ساخت‌و‌ساز ایمن پس از زلزله مطالعه موردی: کاربست کلاف‌های چوبی در معماری خانه‌های قاجاری»، نامه معماری و شهرسازی، (11): 59-70. https://aup.j111_61904ff1e63cd03cb2ab30b3b7368a3e
17. - گدار، آندره، (1365). آثار ایران. ترجمۀ سروقدمقدم، ابوالحسن. مؤسسه چاپ و انتشارات آستان قدس رضوی.
18. - گلابچی، محمود؛ و جوانی دیزجی، آیدین، (1395). فن‌شناسی معماری ایران. تهران: دانشگاه تهران.
19. - گنجه‌ای، سپهر، (1390). «سیستم قاب سبک ساختمانی». دومین کنفرانس بین المللی معماری و سازه، مرکز تحقیقات ساختمان و مسکن، شمارۀ 501.
20. - مختاری، فلورا؛ حاتمی‌خانقاهی، توحید؛ و گسیلی، بهرام، (1398). «ارزیابی تحلیلی شناسه‌های حرارتی جداره‌های خارجی ابنیه بومی روستایی اقلیم کوهپایه‌ای استان مازندران». پژوهش‌های روستایی، 10 (2): 313-327. 10.22059/JRUR.2019.266280.1289
21. - مظلوم، مهدی، (1389). جزوه سازه‌های بنائی مقاوم در برابر زلزله: گروه عمران.
22. - معقولی، نادیا؛ و احمدزاده، معصومه، (1395). «گونه شناسی مسکن روستایی شهرستان سوادکوه از نظر معماری و سازه». مسکن و محیط روستا، 36 (160): 78-102. .http://jhre.ir/article-1-1230-fa.html
23. - معماریان، غلامحسین، و صفایی‌پور، هادی، (1397). نیارش معماری ایرانی. گلجام.
24. - ولی‌بیگ، نیما؛ رحیمی‌آریایی، افروز؛ و رهروی‌پوده، ساناز، (1396). «تحلیل ویژگی‌های هندسی و توانمندی معماران محلی در فن‌آوری ساخت گنبدهای دو پوسته ی گسسته در شیوه‌ی نایین». پژوهش‌های باستان شناسی ایران، 7 (14): 191- 206 . 10.22084/NBSH.2017.6824.1286
26. - Aloisio, A., (2020). “The Timber-Framed (TF) masonries in L’Aquila: The baraccato Aquilano”. Heritage, 3(2): 306-317. https://doi.org/10.3390/heritage3020018
27. - Amina Abdessemed-Foufa, A. & Benouar, D., (2001). “Atlas of earthquake-resistant traditional techniques in Algeria: The case of the Casbah of Algiers”. European Earthquake Engineering, EEE 2, 0: 2-29. https://www.academia.edu/9090310
28. - Arya, A. S., Bone, T. & Ishiyama, Y., (2004). Guidelines for earthquake resistant non-engineered construction. 13th World Conference on Earthquake Engineering: Canada .https://unesdoc.unesco.org/ark:/48223/pf0000229059
29. - Ashtari Majlan, S., (2021). “An Introduction to Rural Vernacular Architecture of Gilan (Part Two)”. Journal of the Scientific Committee of Vernacular Architecture of ICOMOS Iran(Internal Report), 8: 14-29. https://openarchive.icomos.org/id/eprint/2829/1/CIAV-Iran-Bulletin-No8-Autumn-2021 (In Persian).
30. - Bargi, K., (2009). Principles of Earthquake Engineering. Tehran: University of Tehran. (In Persian).
31. - Barreto, I., (2015). “The bank of Portugal’s quarter : Urban rehabilitation of Baixa Pombalina. extended abstract for obtaining a Master Degree in Architecture”. Supervisor: Professora Doutora Ana Cristina dos Santos Tostões. https://fenix.tecnico.ulisboa.pt/downloadFile/844820067124737/
32. - Campisi, I. & Saeli, M., (2017). “Timber Anti-Seismic Devices In Historical Architecture In The Mediterranean Area”. J. Comp. Meth. and Exp. Meas., 5(6): 940–952. https://DOI: 10.2495/CMEM-V5-N6-940-952
33. - Carazas Aedo, W & Rivero Olmos, A., (2010). “Wattle & Daub: Paraseismic construction handbook”. CRATerre-EAG Team. Maison Levrat, Parc Fallavier. BP 53 F-38092 Villefontaine Cedex, France. https://www.misereor.org/fileadmin/user_upload
34. - Cardoso, R., Lopes, M. & Bento, R., (2004).” Earthquake resistant structures of Portuguese old ‘Pombalino’ buildings”. 13th World Conference on Earthquake Engineering Vancouver, B.C., Canada. https://scholar.tecnico.ulisboa.pt/records/b152c64f-441a-4594-a44d-ffe9fe651112?lang=en
35. - Charkhtab Moghaddam, S., & Hosseini, S. B., (2016). “the effect of Harmony between form and structural on seismic resistance in Houses of Imamzadeh Ibrahim Village”. JHRE. 35(153): 23-34. http://jhre.ir/article-1-763-fa.html (In Persian).
36. - Dar, M. A. & Ahmad, S., (2015). Traditional earthquake resistant systems of Kashmir: https://www.researchgate.net/publication/273322286
37. - Das. R., (2013). Standing Firm: Traditional Aseismic Architecture in the Western-Central Himalayas. Paper presented at Seminar on Traditional Knowledge Systems, Binsar (Almora), October 4-7. https://www.academia.edu/105948496
38. - Dipasquale, L., Omar Sidik, D. & Mecca, S., (2015). “Local seismic culture and earthquake-resistant devices: Case study of Casa Baraccata”. Vernacular Architecture: Towards a Sustainable Future – Mileto, Vegas, García Soriano & Cristini (Eds), https://flore.unifi.it/bitstream/2158/918744/6/6
39. - Doğangün, A., Tuluk, L., Livaoğlu, R. & Acar, R., (2006) “Traditional wooden buildings and their damages during earthquakes in Turkey”. Engineering Failure Analysis, 13: 981– 996. 10.1016/j.engfailanal.2005.04.011
40. - Dutu, A., Gomes Ferreira, J., Guerreiro, L., Branco, F. & Goncalves, A. M., (2012). “Technical note: Timbered masonry for earthquake resistance in Europe”. Materiales de Construccion, 62(308): 615-628. https://doi.org/10.3989/mc.2012.01811
41. - Dutu, A., Niste, M., Spatarelu, I., Dima, DI. & Kishik, S., (2018). “Seismic evaluation of Romanian traditional buildings with timber frame and mud masonry infills by in-plane static cyclic tests”. Engineering Structures, 167: 655-670. 10.1016/j.engstruct.2018.02.062
42. - Esmaeil Zadeh, P., Mokhtari Taleghani, E. & Asghar Zadeh, A., (2022). “An Analysis of Wood Sloped Structures in Industrial Buildings of North of Iran Belonging to the Pahlavi Era”. Naqshejahan-Basic studies and New Technologies of Architecture and Planning, 26 (12(1)): 128- 145. https://dorl.net/dor/20.1001.1.23224 991.1401.12.1.6.6 (In Persian).
43. - Fakhar Tehrani, F., (2006). “Our Fathers' Coping with Earthquakes in Tabriz: Methods of Ensuring Building Safety Against Earthquakes in Traditional Architecture of Tabriz”. Second International Conference on Comprehensive Crisis Management in Unexpected Natural Disasters, Tehran. INDM02_149 (In Persian).
44. - Fateh, M. & Dariush, B., (2009). Rural Architecture (2), Tehran: Science and Knowledge. 9786009092758 (In Persian).
45. - Ganjehi, S., (2011). “Light Frame Construction System”. Second International Conference on Architecture and Structures, Building and Housing Research Center, Issue 501. NCSA02 (In Persian).
46. - Godard, A., (1996). The Art of Iran. Sarvghad Moghaddam, A. Astan Quds Razavi Printing and Publishing Institute. https://noo.rs/ba2Og (In Persian).
47. - Golabchi, M. & Javani-Diazji, A., (2016). Iranian Architectural Technology. Tehran: University of Tehran. (In Persian).
48. - Gonc Alves, A., Guerreiro, L., Candeias, P., Ferreira, J. & Costa, A., (2018) “Characterization of reinforced timber masonry walls in ‘Pombalino’ buildings with dynamic tests”. Eng. Struct., 166: 93-106. https://doi.org/10.1016/j.engstruct.2018.03.036
49. - Graça,V., Paulo, L. & Elisa, P., (2013). “An overview on the seismic behaviour of timber frame structures”. Proceedings of the 1st International symposium on Historic Earthquake-Resistant Timber Frames in the Mediterranean Region H. Ea. R. T, University of Calabria, Italy:10.1007/978-3-319-16187-7_10
50. - Gulkan, P. & Langenbach, R., (2021). “Raditional timber-laced masonry construction in Turkey known as himis”. Masonry Construction in Active Seismic Regions Woodhead Publishing Series in Civil and Structural Engineering: 61-97. https://doi.org/10.1016/B978-0-12-821087-1.00015-6
51. - Gulkan, P.& Langenbach, R., (2004). “The earthquake resistant of traditional timber and masonry dwelling in Turkey”. 13th World Conference on Earthquake Engineering. Vancouver, B. C., Canada. http://www.conservationtech.com
52. - Hicyilmaz, K., Bothara, J. & Stephenson, M., (2011). “Housing report Dhajji Dewari”. World Housing Encyclopedia an Encyclopedia of Housing Construction in Seismically Active Areas of the World an initiative of Earthquake Engineering Research Institute (EERI) and International Association for Earthquake Engineering (IAEE): Report 146. https://www.world-housing.net/WHEReports
53. - Hosseini, N., Hosseini, M. & HeiraniPour, M., (2020). “The role of Orosi’s Islamic Geometric Patterns in the building façade design for Improving occupants’ daylight performance”. Journal of Daylighting, 7: 201-221. DOI: 10.15627/jd.2020.18
54. - Hueto Escobar, A., Mileto, C., Vegas López-Manzanares, F. & Macchioni, N., (2022). “Traditional constructive techniques and their relation to geographical conditioning factors. The case of Half-Timbered walls in Spain”. International Journal of Architectural Heritage, https://doi.org/10.1080/15583058.2022.2155884
55. - Jabal Ameli, A., (2003). Strengthening plan for the columned porch of Ali Qapu. Organization of Cultural Heritage, Handicrafts and Tourism. (In Persian).
56. - Javier, O., Graca, V. & Mariana, C., (2014). “An overview of seismic strengthening techniques traditionally applied in vernacular architecture”. 9th International Masonry Conference in Guimarães. https://esg.pt/seismic-v/assets/uploads/2015/10/
57. - Kabir Saber, M., (2013). “Traditional principals For safe construction after earthquake in old Tabriz (wooden coil technique in Qajariieh era residential architecture)”. Architecture and Urban Planning, (11): 59-70. https://aup.j111_61904ff1e63cd03cb2ab30b3b7368a3e (In Persian).
58. - Kamran Kasmaii, H., Daneshjou, K. & Mofidi Shemirani, S., (2017). “Gilan native habitat assessment body-centered sustainable by Sachs and energy simulation software”. Naqshejahan, 7(2): 58-69. 20.1001.1.23224991.1396.7.2.3.0 (In Persian).
59. - Karaman, O. Y. & Zeren, M. T., (2015). “Examples of wooden vernacular architecture; Case study: Turkish houses in Western Anatolia”. DG Gruyter, 77-87. 10.1515/jbe-2015-0008
60. - Khakpour, M., (2011). Architecture of Gilan houses. Rasht: Farhang Ilia. (In Persian).
61. - Langenbach, R., (2008). “Resisting Earth’s Forces: Typologies of Timber Buildings in History”. Structural Engineering International, 18(2): 137-140. https://doi.org/10.2749/101686608784218806
62. - Larsen, K. & Marstein, N., (2016). Conservation of historic Timber structures: An ecological approach. This text was originally published in 2000 in Butterworth-Heinemann Series in Conservation and Museology All illustrations are by the authors if not stated otherwise Oslo. http://openarchive.icomos.org/1656/1
63. - Lin, Y., Chun, Q., Zhang, C., Han, Y. & Fu, H., (2022). “Research on seismic performance of traditional Chinese hall-style timber buildings in the Song and Yuan dynasties (960–1368 AD): a case study of the main hall of Baoguo Temple”. Journal of Wood Science, 68(1): 10.1186/s10086-021-02009-y
64. - Maghouli, N. & Ahmadzadeh, M., (2017). “Typology of Architectural and Structural of Rural housing in Savadkuh City”. JHRE, 36(160): 87-102. http://jhre.ir/article-1-1230-fa.html (In Persian).
65. - Mazloum, M., (2010). Handbook of Earthquake-Resistant Building Structures: Civil Engineering Group. (In Persian).
66. - Mehdizadeh Seraj, F. & Moussavian, E., (2012). “A historical experience of local seismic proof shelters in Quchan-northeast of Iran”. International Journal of Architectural Engineering & Urban Planning: 100-107. https://ijaup.iust.ac.ir/article-1-83-en.html
67. - Memarian, G. & Safaeepor, H., (2018). Iranian Architectural Niyāresh. Goljam. (In Persian).
68. - Miguel, F., Julien, H. & Olivier, L., (2015). “Technical guide for master trainers: earthquake resistant buildings using local materials in Dolakha, Ramechhap and Sindhuli – Nepal”. Grenoble: CRAterre-ENSAG & Croix-Rouge suisse. 116. https://archive.org/details
69. - Minke, G., (2001). Conservation manual for earthquake resistant houses built of earth. gate BASIN at CTZ gmbh. https://www.preventionweb.net/files/5230
70. - Mukhtari, F.; Hatami Khanghahi, T. & Gasili, B., (2019). “Analytical Evaluation of the Thermal Properties of the External Walls of Traditional Rural Dwellings Located in the Foothills of Mazandaran Province”. Rural Research, 10(2): 313-327. 10.22059/jrur.2019.266280.1289 (In Persian).
71. - National information center of earthquake engineering, (1980). Guidelines for earthquake resistant non-engineered construction. Revised edition of “Basic concept of Seismic codes”. I (2), India. https://www.traditional-is-modern.net/LIBRARY/GUIDELINES/
72. - Olivier Moles, M., (2006). Technical guide for master trainers: Earthquake resistant buildings using local materials in Kafal Ghar (Kashmir, Pakistan): CRATerre-ENSAG Grenoble https://archive.org/details/Technical_guide_for_master_trainers
73. - Ortega, J., Vasconcelos, G. & Pereira, M. C., (2014). An overview of seismic strengthening techniques traditionally applied in vernacular architecture. https://repositorium.sdum.uminho.pt/handle/1822/30423
74. - Quinn, N., D’Ayala, A. & Descamps, T., (2016). “Structural characterization and numerical modelling of historic Quincha walls”. Int. J. Architect. Herit. 10 (2e3): 300e331. 10.1080/15583058.2015.1113337
75. - Rezazadeh Ardebili, M., (2017). Restoration of historical monuments (cognition, pathology and technology). Tehran, University of Tehran. (In Persian).
76. - Ruggieri, N., Tampone, G. & Zinno, R., (2013). Historical earthquake- resistant timber frames in the Mediterranean Area: ICOMOS International Wood Committee Florence. Italy. https://www.conservationtech.com/2013-Italy-HEaRT-conf-Cosenza/BOOK
77. - Sahin, G., (2018). “History and characteristics of construction tech- niques used in traditional timber Ottoman houses”. Int. J. Ar- chitect. Herit., 12 (1): 1e20. 10.1080/15583058.2017.1336811
78. - Sattar Sheikhi, G., Bakhshi, H. & Yazdinejad, M., (2008). “A method for seismic rehabilitation of buildings made of building materials”. National Conference on Reinforcement of Iran, Yazd University. (In Persian).
79. - Shah,V. R. & Tayyibji, R., (2008). “The Kashmir House its Seismic Adequacy and the Question of Social Sustainability”. The 14th World Conference on Earthquake Engineering. October 12-17, Beijing, China. https://www.iitk.ac.in/nicee/wcee/article
80. - Szakats, J., (2007). Improving the earthquake resistant of small buildings, Houses and Community infrastructure. BE(Civil), MIPENZ (Civil & Structural), MIStructE, IntPE Wellington, New Zealand. https://www.unisdr.org/files/1390_Earthquake
81. - Tabeshpour, M. & Farhangfar, H., (2005). “Seismic structural resistance of brick masonry structures”. Road and Building Journal, 28. https://www.magiran.com/p308034 (In Persian).
82. - Thakkar, J. & Morrison, S., (2010). “An Analysis of Kath-khuni Architecture as a Sustainable Humane Habitat in Himachal Pradesh”. 11th International Conference on Humane Habitat (ICHH) 2009 by International Association for Humane Habitats (IAHH) at Rizvi College of Architecture, India. https://www.academia.edu/195861/
83. - Tuccillo, V., Palmsano, M., Leccisi, F., Varchetta, M. & Fiengo, P., (2010). “Recovery of Traditional Construction Techniques in Colombia, Portugal and Italy”. Collected Papers on Building Technology 18th CIB World Building Congress. Salford, United Kingdom. https://www.irbnet.de/daten/iconda/CIB18728
84. - Ugalde, D., Almazán, J., María, H. & Guindos, P., (2019) “Seismic protection technologies for timber structures: a review”. European Journal of Wood and Wood Products, 77: 173–194 https://doi.org/10.1007/s00107-019-01389-9
85. - UNHABITAT, (2007). Build back Better –Bhatar background and rationale June. UNHABITAT https://www.traditional-is-modern.net/LIBRARY/PAKISTAN-reconstruct/07(06-29
86. - UNHABITAT, (2017). Bhatar construction timber reinforced masonry. UNHABITAT https://unhabitat.org.pk/wp-content/uploads/2021/07/
87. - ValiBeig, N., Rahimi Ariaei, A., & Rehravi Poudeh, S., (2017). “Persian Architects’ Mastery over Geometry to Build Discontinuous Double-Skin Domes in Nain Style”. Iranian Archaeological Research, 14(7): 191-206. 10.22084/nbsh.2017.6824.1286 (In Persian).
88. - Van Der Zanden, M., (2018). “Assessment of the seismic performance and sustainability of the Kath-Kuni building style in the Indian Himalaya”. Thesis Research For the degree of Master of Science at Delft University of Technology. https://repository.tudelft.nl/record/uuid:6eea
89. - Zahraei, M., Sadegh Azar, M. & Zeinali, R., (2011). “Studying Performance of 3 Passive Control Methods to Improve Seismic Response of Moment Steel Frames”. Journal of Civil Engineering and Surveying, 45(4): 436-429. https://jcse.ut.ac.ir/article_23742.html (In Persian).
90. - Zaribafian, O., (2006). “Strategies for protecting historical monuments against earthquakes. Regional Scientific Conference on Desert Architecture”. Islamic Azad University, Ardestan Branch. paper/811793/1385 (In Persian).
91. - Zatir, A., & Mokhtari, A., (2014). “Research on the seismic performance of traditional buildings: Impact”. International Journal of Research in Engineering & Technology: 2(1): 15-20. https://www.researchgate.net/publication/332182391
92. - Zomorashidi, H., (2011). Iranian Architecture, Traditional Materials. Tehran, Zomord. (In Persian).
93. - https://imaggeo.egu.eu/view/13861/

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.