Volume 1, Issue 1 (Fall 2017)                   Ir Cons Sci J 2017, 1(1): 23-31 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ershad-Langroudi A, Fadaii H, Ahmadi K. Silane/Siloxane Surface Treatment for Cohesion Ability and Strengthening Agent of Historical Stone. Ir Cons Sci J. 2017; 1 (1) :23-31
URL: http://journal.richt.ir/icsj/article-1-24-en.html
1- Color & Surface Coating Group, Polymer processing Department, Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran , A.Ershad@ippi.ac.ir
2- Research Center for Conservation of Cultural Relics, Tehran, Iran
Abstract:   (3899 Views)
Silane/siloxane surface treatment are proposed as potential polymeric materials for protective and consolidation coatings of limestone substrates. The silane and silioxane coatings are widely used to strengthen and waterproof of historical monuments. Historical stones are very fragile because of bearing many years in sever weathering conditions. Strengthening historical stones requires paying attention to surface treatment by the aim of decreasing humidity and improvement of mechanical properties. Toward this end, the consolidation coatings using silane and siloxane resins can improve the mechanical properties of historical stones against weathering condition. In this study, two types of coatings based on mixed of silane/siloxane as potential coatings to consolidate historical stones were proposed and the mechanical results were compared with uncoated stones. The mechanical tests approved the silane and siloxane resins can be considered as a proper choice to protect and strengthen historical stones. The results indicated that the contact angle of the coated samples rises up with treating by silane/siloxane resins. This could be due to the presence of organic groups of poly siloxanes act as hydrophobic agents which increase the hydrophobic nature of the surface contact angle. In addition, Si-OH bond of silane as well as consolidation effect can be created the covalent bonding by mineral surface and filling of the small fissures in the stone surfaces. 
Full-Text [PDF 550 kb]   (995 Downloads)    
Type of Study: Research | Subject: General
Received: 2017/11/13 | Accepted: 2017/11/13 | Published: 2017/11/13

1. Ershad-Langroudi, M. Sadat-Shojai, Siloxane-Based Coatings as Potential Materials for Protection of Brick-Made Monuments, Journal of color sience and Technology (in Persian) 3 (2009) 177-188. available online @ www.jcst.icrc.ac.ir
2. Beheshtifar, M. (2015). Technical studies providing a protective mechanism stone plinth period Ghajar of hazrat masomeh (S) Transferred to the Green Dom. Tehran: Islamic Azad University.
3. C. Rodriguez-Navarro, A. Suzuki, E. Ruiz-Agudo, Alcohol dispersions of calcium hydroxide nanoparticles for stone conservation, Langmuir 29 (2013) (1470) 11457–11461.
4. Cardiano, P., Ponterio, R. C., Schiavo, S. L., & Piraino, P. (2005). Epoxy-silica polymers as stone conservation materials. Polymer, 46(6), 1857–1864. [DOI:10.1016/j.polymer.2005.01.002]
5. Christodoulou, C., Goodier, C. I., Austin, S. A., Webb, J., & Glass, G. K. (2013). Long-term performance of surface impregnation of reinforced concrete structures with silane. Construction & Building Materials, 48, 708–716. [DOI:10.1016/j.conbuildmat.2013.07.038]
6. Daniele, V., & Taglieri, G. (2012). Synthesis of Ca(OH)2 nanoparticles with the addition of Triton X-100. Protective treatments on natural stones: Preliminary results. Journal of Cultural Heritage, 13(1), 40–46. [DOI:10.1016/j.culher.2011.05.007]
7. Delgado Rodrigues, J., & José Delgado Rodrigues. (2015). Defining, mapping and assessing deterioration patterns in stone conservation projects. Journal of Cultural Heritage,16(3), 267–275. [DOI:10.1016/j.culher.2014.06.007]
8. Doehne, E., & Price, C. A. (2010). Stone conservation. In Stone Conservation: An Overview of Current Research. Los Angeles: Getty Conservation Institute. [PMID]
9. Ershad-Langroudi, A., & Rahimi, A. (2009). Synthesis and characterisation of nano silica-based coatings for protection of antique articles. International Journal of Nanotechnology,6(10/11), 915–925. [DOI:10.1504/IJNT.2009.027555]
10. Ershad–Langroudi, A., Mai, C., Vigier, G., & Vasoille, R. (1997). Hydrophobic Hybrid Inorganic–Organic Thin Film Prepared by Sol–Gel Process for Glass Protection and Strengthening Applications. Journal of Applied Polymer Science, 65(12), 2387–2393. https://doi.org/10.1002/(SICI)1097-4628(19970919)65:12<2387::AID-APP11>3.0.CO;2-Z [DOI:10.1002/(SICI)1097-4628(19970919)65:123.0.CO;2-Z]
11. Facio, D. S., & Mosquera, M. J. (2013). Simple strategy for producing superhydrophobic nanocomposite coatings in situ on a building substrate. Applied Material Interfaces, 5(15), 7517–7526. [DOI:10.1021/am401826g]
12. Favaro, M., Tomasin, P., Ossola, F., & Vigato, P. A. (2008). A novel approach to consolidation of historical limestone: The calcium alkoxides. Applied Organometallic Chemistry, 22, 698–704. [DOI:10.1002/aoc.1462]
13. Fermo, P., Cappelletti, G., Cozzi, N., Padeletti, G., Kaciulis, S., Brucale, M., & Merlini, M. (2014). Hydrophobizing coatings for cultural heritage. A detailed study of resin/stone surface interaction. Applied Physic A, 116(1), 341–348. [DOI:10.1007/s00339-013-8127-z]
14. Ferreira Pinto, A. P., & Delgado Rodrigues, J. (2008). Stone consolidation: The role of treatment procedures. Journal of Cultural Heritage, 9(1), 38–53. Retrieved from http://www.parsexcir.com/default.aspx?categoryID=0&name=about&lang=en and http://www.satecma.com /ing/pdf/1752.pdf and https://www.wacker.com /cms/en/products/product/product.jsp?product=10085. [DOI:10.1016/j.culher.2007.06.004]
15. Illescas, J. F., & Mosquera, M. J. (2012). Producing surfactant-synthesized nanomaterials in situ on a building substrate, without volatile organic compounds. Applied Material Interfaces,4(8), 4259–4269. [DOI:10.1021/am300964q] [PMID]
16. J. Delgado Rodrigues, Consolidation of decayed stones. A delicate problem with few practical solutions, Historical Constructions, P.B. Lourenço, P. Roca (Eds.), International Seminar on Historical Constructions. Guimaráes, Portugal Guimarães, (2001) 3-14.
17. Khallaf, M. K., El-Midany, A. A., & El-Mofty, S. E. (2011). Influence of acrylic coatings on theinterfacial, physical, and mechanical properties of stone-based monuments. Progress in Organic Coatings, 72(3), 592–598. [DOI:10.1016/j.porgcoat.2011.06.021]
18. Li, D., Xu, F., Liu, Z., Zhu, J., Zhang, Q., & Shao, L. (2013). The effect of adding PDMS-OH and silica nanoparticles on sol–gel properties and effectiveness in stone protection. Applied Surface Science, 266, 368–374. [DOI:10.1016/j.apsusc.2012.12.030]
19. Medeiros, M. H. F., & Helene, P. (2008). Efficacy of surface hydrophobic agents in reducing water and chloride ion penetration in concrete. Materials and Structures, 41(1), 59–71. [DOI:10.1617/s11527-006-9218-5]
20. Medeiros, M. H. F., & Helene, P. (2009). Surface treatment of reinforced concrete in marine environment: Influence on chloride diffusion coefficient and capillary water absorption. Construction & Building Materials, 23(3), 1476–1484. [DOI:10.1016/j.conbuildmat.2008.06.013]
21. Morote-Martínez, V., Pascual-Sánchez, V., & Martín-Martínez, J. M. (2008). Improvement in mechanical and structural integrity of natural stone by applying unsaturated polyester resin-nanosilica hybrid thin coating. European Polymer Journal, 44(10), 3146–3155. [DOI:10.1016/j.eurpolymj.2008.07.027]
22. Ngoic Lan, T. T., Nishimura, R., Tsujino, Y., & Phuong, T. (2005). The effects of air pollutionand climatic factors on atmospheric corrosion of marble under field exposure. Corrosion Science, 47(4), 1023–1038. [DOI:10.1016/j.corsci.2004.06.013]
23. Sadat-Shojai, M., & Ershad-Langroudi, A., & the Mehdi Sadat-Shojai. (2009). Amir Ershad-Langroudi, Polymeric Coatings for Protection of Historic Monuments: Opportunities and Challenges. Journal of Applied Polymer Science, 112(4), 2535–2551. [DOI:10.1002/app.29801]
24. Salazar-Hernández, C., María, J. P. A., Salgado, P., & Cervantes, J. (2010). TEOS–colloidal silica–PDMS-OH hybrid formulation used for stone consolidation. Applied Organometallic Chemistry, 24, 481–488. [DOI:10.1002/aoc.1646]
25. Snethlage, R. (2011). Stone Conservation. In S. Siegesmund & R. Snethlage (Eds.), Stone in Architecture (pp. 411–544). Springer Berlin Heidelberg; [DOI:10.1007/978-3-642-14475-2_7]
26. Troiano, F., Vicini, S., Gioventù, E., Lorenzi, P. F., Improta, C. M., & Cappitelli, F. (2014). A methodology to select bacteria able to remove synthetic polymers. Polymer Degradation & Stability, 107, 321–327. [DOI:10.1016/j.polymdegradstab.2013.12.029]
27. Vries, J., & Polder, R. B. (1997). Hydrophobic treatment of concrete. Construction & Building Materials 11(4), 259–265. [DOI:10.1016/S0950-0618(97)00046-9]
28. Wheeler, G. (2005). Alkoxysilanes and the Consolidation of Stone. Los Angeles, CA: The Getty Conservation Institute.
29. Xu, F., Li, D., Chen, W., & Gao, S. (2010). Formation of hydrophobic silica coatingson stones for conservation of historic sculptures. Chinese Journal of Chemistry, 28(8), 1487–1490. [DOI:10.1002/cjoc.201090254]
30. Xu, F., Li, D., Zhang, Q., Zhang, H., & Xu, J. (2012). Effects of addition of colloidal silica particles on TEOS-based stone protection using n-octylamine as a catalyst. Progress in Organic Coatings, 75(4), 429–434. [DOI:10.1016/j.porgcoat.2012.07.001]
31. Xu, F., Li, D., Zhang, Q., Zhang, H., & Xu, J. (2013). Effect of the addition of hydroxyl-terminated polydimethylsiloxane to TEOS-based stone protective materials. Journal of Sol-Gel Science and Technology, 65(2), 212–219. [DOI:10.1007/s10971-012-2926-0]
32. Xu, F., Xiang, N., Li, D., Yu, J., Wu, D., & Zhang, Q. (2014). Use of coupling agents for increasing passivants and cohesion ability of consolidant on limestone. Progress in Organic Coatings, 77(11), 1613–1618. [DOI:10.1016/j.porgcoat.2014.05.006]
33. Yang, C. C., Wang, L. C., & Weng, T. L. (2004). Using charge passed and total chloride content to assess the effect of penetrating silane sealer on the transport properties of concrete. Materials Chemistry and Physics, 85(1), 238–244. [DOI:10.1016/j.matchemphys.2004.01.022]
34. Zhang, Z., MacMullen, J., Dhakal, H. N., Radulovic, J., Herodotou, C., Totomis, M., & Bennett, N. (2013). James MacMullen, Hom Nath Dhakal, Jovana Radulovic, Constandinos Herodotou, Miltiadis Totomis, Nick Bennett, Biofouling resistance of titanium dioxide and zinc oxide nanoparticulate silane/siloxane exterior facade treatments. Building and Environment, 59, 47–55. [DOI:10.1016/j.buildenv.2012.08.006]
35. Zielecka, M., & Bujnowska, E. (2005). Silicone-containing polymer matrices as protective coatings properties and applications. Progress in Organic Coatings, 55(2), 160–167. [DOI:10.1016/j.porgcoat.2005.09.012]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.