Volume 1, Issue 3 (Fall 2019)                   Tour Res 2019, 1(3): 77-89 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Malhosseini Darani K, Hosseini S M, Falahatkar S. Evaluation of Visual Quality of Landscapes of Hyrcani Forests using Remote Sensing and Landscape Metrics. Tour Res. 2019; 1 (3) :77-89
URL: http://journal.richt.ir/article-7-75-en.html
1- Faculty of Natural Resources and Environments, Malayer University, Malayer, Iran
2- Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Iran
Abstract:   (653 Views)
The purpose of this study was to determine the relationship between visual quality of Hyrcani forests and spatial pattern of land use in 9 locations in northern Iran. To do so, a significant portion of the area was photographed and ranked according to the views of a group of 150 viewers in terms of naturalness, cohesion, turbulence and complexity. The area map was prepared using Landsat 8- OLI image processing in 2016. Using the DEM layer and angle of view, their visible areas were identified and their spatial pattern of use was investigated using NP, PD, MPS, LSI, MNN, SHDI and PLAND land metrics. According to the results, forests near rangelands make up about 90% of the area. The results of MPS and LSI showed that the whole landscape was composed of patches ranging from 1 to 6 hectares. Landscape spots at location 6 are on average, more distant and forest patches at location 7 have the highest MNN. The lowest SHDI was obtained at point 2 and the highest at point 7. PLAND data showed that more than 50% of the landscapes were forest-related. The results of correlation analysis showed that there is a significant relationship between (R≥0.60, P>0.05), especially between viewers’ view of normality, cohesion, perturbation and SHDI and PLAND values. Visual preferences of people regarding recreational visits are areas with natural forest spots.
Full-Text [PDF 802 kb]   (104 Downloads)    
Type of Study: Research | Subject: Forests & Meadows
Received: 2019/05/30 | Accepted: 2019/08/9 | Published: 2019/10/3

1. ArcGIS. (2006). 10.0 of Arc View, ArcMap, ArcCatalog, ArcToolbox and spatial analyst user's guide. Redlands, CA: ESRI.
2. Aronoff, S. (2005). Remote sensing for GIS managers (Vol. Sirsi). doi: 9781589480810): Esri Press Redlands, CA.
3. Atkinson. P. M., & Lewis, P. (2000). Geostatistical classification for remote sensing: an introduction. Computers & Geosciences 26(4), 361- 371. [DOI:10.1016/S0098-3004(99)00117-X]
4. Campbell, J. B., & Wynne, R. H. (2011). Introduction to remote sensing. New York: Guilford Press.
5. Carrara, E., Arroyo-Rodríguez, V., Vega-Rivera, J. H., Schondube, J. E., de Freitas, S. M., & Fahrig, L. (2015). Impact of landscape composition and configuration on forest specialist and generalist bird species in the fragmented Lacandona rainforest, Mexico. J Biological Conservation, 184, 117- 126. [DOI:10.1016/j.biocon.2015.01.014]
6. Daniel, T. C. (2001). Whither scenic beauty? Visual landscape quality assessment in the 21st century. J Landscape and Urban Planning, 54(1), 267- 281. [DOI:10.1016/S0169-2046(01)00141-4]
7. del Castillo, E. M., García-Martin, A., Aladrén, L. A. L., & de Luis, M. (2015). Evaluation of forest cover change using remote sensing techniques and landscape metrics in Moncayo Natural Park (Spain). J Applied Geography, 62, 247- 255. [DOI:10.1016/j.apgeog.2015.05.002]
8. Fan, C., & Myint, S. (2014). A comparison of spatial autocorrelation indices and landscape metrics in measuring urban landscape fragmentation. J Landscape and urban planning, 121, 117- 128. [DOI:10.1016/j.landurbplan.2013.10.002]
9. Frank, S., Fürst, C., Koschke, L., Witt, A., & Makeschin, F. (2013). Assessment of landscape aesthetics-validation of a landscape metrics-based assessment by visual estimation of the scenic beauty. J Ecological Indicators, 32, 222- 231. [DOI:10.1016/j.ecolind.2013.03.026]
10. Fry, G., Tveit, M., Ode, Å., & Velarde, M. (2009). The ecology of visual landscapes: Exploring the conceptual common ground of visual and ecological landscape indicators. J Ecological Indicators, 9(5) 933- 947. [DOI:10.1016/j.ecolind.2008.11.008]
11. Glaeser, E. L., & Kahn, M. E. (2004) Sprawl and urban growth. Handbook of regional and urban economics, 4, 2481- 2527. [DOI:10.1016/S1574-0080(04)80013-0]
12. Jaafari, S., Sakieh, Y., Shabani, A. A., Danehkar, A., & Nazarisamani, A. (2016). Landscape change assessment of reservation areas using remote sensing and landscape metrics (case study: Jajroud reservation, Iran). J Environment, Development and Sustainability, 18(6), 1701- 1717. [DOI:10.1007/s10668-015-9712-4]
13. Jabbarian Amiri, B., & Nakane, K. (2009). Modeling the linkage between river water quality and landscape metrics in the Chugoku district of Japan. J Water resources management, 23(5), 931- 956. [DOI:10.1007/s11269-008-9307-z]
14. Kayiranga, A., Kurban, A., Ndayisaba, F., Nahayo, L., Karamage, F., & Ablekim, A. (2016). Monitoring forest cover change and fragmentation using remote sensing and landscape metrics in Nyungwe-Kibira park. J Geosci. Environ. Prot, 4, 13. [DOI:10.4236/gep.2016.411003]
15. Klosterman, S., Hufkens, K., Gray, J., Melaas, E., Sonnentag, O., Lavine, I., et al. (2014). Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery. Biogeosciences, 4305. [DOI:10.5194/bg-11-4305-2014]
16. Leitão, A. B., Miller, J., Ahern, J., & McGarigal, K. (2012). Measuring landscapes: A planner's handbook. Washington, D.C.: Island press.
17. McGarigal, K., Marks, B., Holms, C., & Ene, E. (1994). FRAGSTATS: spatial analysis program for quantifying landscape structure. Version 2.0. Forest Science Department, Oregon State University, Corvallis, USA. [DOI:10.2737/PNW-GTR-351]
18. Ode, A., Tveit, M. S., & Fry, G. (2008). Capturing landscape visual character using indicators: touching base with landscape aesthetic theory. Landscape research, 33(1), 89- 117. [DOI:10.1080/01426390701773854]
19. Ozkan, U. Y. (2014). Assessment of visual landscape quality using IKONOS imagery. Environmental monitoring and assessment. 186(7), 4067- 4080. [DOI:10.1007/s10661-014-3681-1]
20. Rutledge, D. T. (2003). Landscape indices as measures of the effects of fragmentation: can pattern reflect process? Paperback. 27 Pages.
21. Sakieh, Y. (2017). Understanding the effect of spatial patterns on the vulnerability of urban areas to flooding. International Journal of Disaster Risk Reduction. 25, 125- 136. [DOI:10.1016/j.ijdrr.2017.09.004]
22. Ulrich, R. S. (1983). Aesthetic and affective response to natural environment. Human Behavior & Environment: Advances in Theory & Research, 6, 85- 125. [DOI:10.1007/978-1-4613-3539-9_4]
23. Wu, Y., Hossain, H., Bishop, I. D., & Sposito, V. (2006) Using GIS in landscape visual quality assessment. J Applied Gis, 2 (3): Citeseer. [DOI:10.2104/ag060018]
24. Zube, E., Simcox, D. E., & Law, C. S. (1987). Perceptual landscape simulations: history and prospect. Landscape journal. 6(1), 62- 80. [DOI:10.3368/lj.6.1.62]

Add your comments about this article : Your username or Email: